Smart Contract on NexRes

ECS 265 Final Project Mid term report
Team members:
Tong Zhu, Hongxiang Zhang, Siyuan Liu, Yifeng Shi, Junchao Chen

System Architecture

.) [Web Browser]
Users submit their smart

contracts or transactions

throughout their / Y
webbrowers. Web Proxy

Web Proxy forward the

smart contracts and

transactions to Nexres to

save them into each node. Nexres Nexres Nexres
Each smart contract and)

transaction will be | ! |

executed by a local smart Smart Smart Smart

contract service once they Contract Contract Contract
\ Service

are committed by Nexres Service Service

Web Browser

Web Browser is the interface used by the users. User can upload and review their contracts, and submit
their transactions with a contract id.

We Use Contract Portal as our application platform. Contract Portal is a web application for users to
upload, view and delete the smart contracts. The backend API of the web application is developed with
.NET Core. The frontend is developed with React. The web application is deployed and running in docker
containers hosted on Google Cloud Compute Engine service.

View the smart contracts Upload Smart Contract

(HTTP GET) o @

App user request web page P ; . App user request web page
(HTTP GET) e 1 @ H :
Web browser g Lo Contract Portal Web browser . Do Contract Portal
D Google Cloud . s N D Google Cloud
: App user view the IDs of the smart : Tt : : App user upload smart contract ¢ TTTTTTmTmmmmmmmmsmmsemsesoseeet .
. contracts that have been uploaded . binaries with customized IDs

(HTTP GET) = e (HTTP POST)

Upload and review smart contracts

Contract Portal

View Upload

Upload a smart contract binary

Choose file contract2.sol

Contract Name

contract2.sol

Smart contract contract2.sol uploaded successfully

Contract Portal

View Upload

Smart Contracts

File Name

Actions

contract0.sol

contract1.sol

contract2.sol

n
n

Smart Contract Service (SCS)

Smart Contract Service(SCS) is a service handling the user contracts and transactions.

All the contracts will be uploaded to the SCS to register and all the transactions will be executed inside the
SCS.

It uses SQlite as a backend database to storage the transaction results.

W Transactions

SCS

[SQlite

J

Smart Contract

id go-script
Smart Contract contains a go-script written by the users. It
contains multiple functions and a unique contract id.

pragma solidity >0.8.17;

Smart Contract will be assigned a unique id to identify itself. contract Etherualiet {

address payable public owner;

constructor() {
owner = payable(msg.sender);

}
receive() external payable {}

function withdraw(uint _amount) external {
require(msg.sender == owner, "caller is not owner");
payable(msg.sender).transfer(_amount);

}

function getBalance() external view returns (uint) {
return address(this).balance;

}

Complie the contract

We use Sodilty to compile contract to abi (application binary
interface) when the contract is going to be uploaded.
solc --abi demo.sol -o build

Register a Smart Contract

1. SCSsaves the smart contract file into local disk.

2. SCSsaves the contract id with its saved path into
SQLite.

SCS

/\

SQLite Disk

[Contract Files] [Contract Files]

[id -> disk path }

[Contract Files] [Contract Files]

Execute a Smart Contract

Obtain the contract file path from SQLite by its id.
Execute the contract using the parameters.
Return the results to the user.

APONDPE

Parameters are sent by the user with the contract id.

Execute the Contract

Node

Contract Server Database(Sqlite)

Send Contract information
and parameters

Y

Get contract path

L L

Y

Return contract path

Fetch contract
analysis parameters

Execute contract

Update database

Return result

Y

Return result

