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Web Browser

Web Browser is the interface used by the users. User can upload and review their contracts, and submit
their transactions with a contract id.

We Use Contract Portal as our application platform. Contract Portal is a web application for users to
upload, view and delete the smart contracts. The backend API of the web application is developed with
.NET Core. The frontend is developed with React. The web application is deployed and running in docker
containers hosted on Google Cloud Compute Engine service.
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Upload and review smart contracts
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Smart Contract Service (SCS)

Smart Contract Service(SCS) is a service handling the user contracts and transactions.

All the contracts will be uploaded to the SCS to register and all the transactions will be executed inside the
SCS.

It uses SQlite as a backend database to storage the transaction results.
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Smart Contract

id go-script
Smart Contract contains a go-script written by the users. It
contains multiple functions and a unique contract id.

pragma solidity >0.8.17;

Smart Contract will be assigned a unique id to identify itself. contract Etherualiet {

address payable public owner;

constructor() {
owner = payable(msg.sender);

}
receive() external payable {}

function withdraw(uint _amount) external {
require(msg.sender == owner, "caller is not owner");
payable(msg.sender).transfer(_amount);

}

function getBalance() external view returns (uint) {
return address(this).balance;

}



Complie the contract

We use Sodilty to compile contract to abi (application binary
interface) when the contract is going to be uploaded.
solc --abi demo.sol -o build



Register a Smart Contract

1. SCSsaves the smart contract file into local disk.

2. SCSsaves the contract id with its saved path into
SQLite.
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Execute a Smart Contract

Obtain the contract file path from SQLite by its id.
Execute the contract using the parameters.
Return the results to the user.
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Parameters are sent by the user with the contract id.
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